Influence of spatial variation in precipitation on artificial neural network rainfall-runoff model

نویسنده

  • André Dozier
چکیده

Modeling rainfall-runoff processes is a very challenging task due to data collection, time, money, and technology constraints. Artificial neural networks (ANNs) are modeling tools that can quickly adapt and learn input-output relationships for many different engineering problems. An Elman-type recurrent ANN was trained to simulate observed streamflow for Fountain Creek at Pueblo, CO, using varying amounts of spatial precipitation information. Nine zones were originally delineated within the watershed draining to Fountain Creek at Pueblo based on estimated overland flow travel time. Five different spatially varying scenarios were modeled: scenarios containing 9 zones, 6 zones, 3 zones, 2 zones, and 1 zone. Each scenario was trained and simulated 100 times, each with randomly generated initial weights. Spatial variability in precipitation data allows the ANN to achieve better performance when simulating the training dataset. However, when applied to the validation and testing time periods, ANN performance generally decreases with additional spatially variability. In addition to exploring results of the ANN rainfall-runoff model, the application of geographical information systems to rainfall-runoff input processing is demonstrated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

بررسی توانمندی مدل شبکه عصبی مصنوعی در شبیه‌سازی فرآیند بارش-رواناب در شرایط تغییر اقلیم (مطالعه موردی: حوزه سد پاشاکلا بابل)

River flow forecasting plays an important role in planning, management and operation of water resources. To achieve this goal and according to the phenomenon of global warming, it is necessary to simulate the daily time series of rainfall and runoff for future periods. Therefore, it is important to survey the detection of climate change event and its impact on precipitation and runoff in the ba...

متن کامل

The efficiency of Artificial Neural Network, Neuro-Fuzzy and Multivariate Regression models for runoff and erosion simulation using rainfall simulator

1- INTRODUCTION According to the complexity of environmental factors related to erosion and runoff, correct simulation of these variables find importance under rain intensity domain of watershed areas.  Although modeling of erosion and runoff by Artificial Neural Network and Neuro-Fuzzy based on rainfall-runoff and discharge-sediment models were widely applied by researchers, scrutinizing Arti...

متن کامل

Hydrological Assessment of Daily Satellite Precipitation Products over a Basin in Iran

In order to measure precipitation as the main variable for estimating the runoff and designing hydraulic structures, the satellite algorithm products that have the proper spatial and temporal coverage, can be used. In this study, at first, the daily streamflow simulation of Sarough-Cahy River from the Zarinehroud basin was conducted through the artificial neural network (ANN) and ground data of...

متن کامل

Spatial Zoning of Iran's Annual Rainfall using ANFIS-FCM Artificial-Fuzzy Neural Model

Precipitation is one of the most significant climatic parameters; its distribution and values in different areas is the result of complex linear and nonlinear relationships between atmospheric elements-climatic processes and the spatial structure of the earth's surface environment. Classification of data and placing them in small and homogeneous zones can be effective in improving the understan...

متن کامل

Prediction of monthly rainfall using artificial neural network mixture approach, Case Study: Torbat-e Heydariyeh

Rainfall is one of the most important elements of water cycle used in evaluating climate conditions of each region. Long-term forecast of rainfall for arid and semi-arid regions is very important for managing and planning of water resources. To forecast appropriately, accurate data regarding humidity, temperature, pressure, wind speed etc. is required.This article is analytical and its database...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012